
1 

 

A Power Conversion Model for Distributed 

PV Systems in California Using 

SolarAnywhere Irradiation 

 

Mohammad Jamaly, Juan L Bosch, and Jan Kleissl 

Dept. of Mechanical and Aerospace Eng., University of California, San Diego 

March 15, 2013 

 

 

Abstract 

A high resolution 1 km satellite solar resource dataset (SolarAnywhere, SAW) was developed by 

Clean Power Research under the CSI program. A photovoltaic (PV) power conversion (or 

performance) model was generated to convert SAW irradiation to power output. The model was 

compared to measured power output from 192 PV systems over a year. The bias error between 

modeled and measured power output was found to be larger in summer (up to 5%) while 

SAW+performance model underestimate the measured data in the other months. A MATLAB 

version of the algorithm is provided at the CSI California Solar Research website. 

 

1. Introduction  

Clean Power Research’s commercially available SolarAnywhere (SAW) provides Global 

Horizontal Irradiation (GHI) and Direct Normal Irradiation (DNI) derived from Geostationary 

Operational Environmental Satellite (GOES) visible imagery at 30 minutes temporal and 1 km 

spatial resolution [1]. To obtain GHI, a cloud index is calculated for each pixel from the 

reflectance measured by the satellite.  Instantaneous, spatially averaged GHI is then calculated 

by using the cloud index along with a clear sky GHI model that considers local and seasonal 

effects of turbidity [2]. The instantaneous GHI is then converted to hourly irradiation assuming 

constant clear sky index (clear sky index is the ratio of actual irradiance versus that expected in 

clear sky conditions). DNI is obtained from clear-sky direct irradiance and GHI using the global-
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to-DNI model, DIRINT, which is an evolution of NREL’s DISC model, using a stability index 

derived from the consecutive records of GHI input [2]. 

Perez et al. [3] found an older version of the SAW algorithm to have mean bias errors (MBE) 

between -5 and 15 W m
-2

 and root mean square errors (RMSE, based on hourly averages) 

ranging from 73-118 W m
-2

 when compared against high quality ground measurements sites 

across the US. Jamaly et al. [4] validated SAW using ground measurements in 2010 at 52 

California Irrigation Management Information System (CIMIS) stations and the NOAA 

Integrated Surface Irradiance Study (ISIS) network in Hanford, CA. SAW was unbiased 

compared to the Hanford ISIS data while SAW overestimated the measured GHI at CIMIS 

stations by 18.07 +- 4.15 W m
-2

 or 3.7% +- 0.9% (95% confidence interval), on average. SAW 

was also biased large in clear conditions compared to GHI in clear sky conditions calculated 

based on the Ineichen model with Linke Turbidity from the SoDa database [2],[5],[6]. 

Jamaly et al. [7] also validated SAW using measured power output at 305 PV systems in 

California (in SDG&E, SCE, and PGE territories) in 2010. They applied the clear sky index (kt) 

to compare irradiation (SAW) and power (CSI) data. ktSAW was found to overestimate ktCSI by 

3.80% +-0.98% (95% confidence interval) throughout the year. The biases were typically smaller 

during midday, but independent of month. Also, it was concluded that the main differences 

between ktSAW & ktCSI occurred in non-clear conditions (relative mean bias errors of 6.0%). 

The objective of this study is to design and test a PV performance model that can be applied to 

SAW or other irradiances to accurately estimate power output at 305 PV systems in California 

for 2010. Section 2 covers the description of the datasets including their temporal interpolation, 

the performance model to convert the irradiance data into power, and error metrics. Results are 

presented in Section 3 and conclusions are made in Section 4. 

 

2. Methodology 

2.1. Datasets  

The California Solar Initiative (CSI) rebate program requires a performance-based-incentive 

(PBI) payout for systems larger than 50 kW and makes it optional for smaller systems [8]. This 

requires metering and monthly submission of 15 minute energy output to the payout 

administrator. We have obtained the 2010 CSI measured output - quality controlled for system 

performance [9] - for 194, 385, and 403 PV power plants in San Diego Gas & Electric 
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(SDG&E), Southern California Edison (SCE), and Pacific Gas & Electric (PGE) territories 

(referred to as investor-owned utilities, IOUs) respectively.  

The CSI database also includes street address and PV system specifications including DC 

Rating (kWDC) at standard test condition (STC), AC Rating (kWAC) at performance test condition 

(PTC), module and inverter models, inverter maximum efficiency, panel azimuth and tilt angles, 

and tracking type. The STC rating is obtained under idealized, controlled conditions of 1000 W 

m
-2

 plane-of-array irradiance and cell temperature at 25
o
C while the PTC is developed in an 

attempt to simulate more realistic conditions at 1000 W m
-2

 plane-of-array irradiance with panel 

temperature derived from ambient air temperature at 20
o
C and 1 m s

-1
 wind speed. Given the 

rapid increase in solar distributed generation (DG) in most coastal urban centers in California 

which are included in our study (e.g. Los Angeles, San Francisco, and San Diego) this dataset 

presents an important validation tool for PV power modeling research that could lead to more 

accurate solar forecasts for utilities and CAISO. 

 

Fig. 1: Map of 192 PV systems in SDG&E, SCE, and PGE territories. 

 

Quality control [10] was used to exclude all CSI sites with at least one of the following 

characteristics not representative of irradiance: PV systems with hourly averaged (versus 15 min) 

data, more than 70% missing data (mostly because they were installed during 2010), significant 

noise or large spikes in power due to recording issues, decrease in power due to soiling, 

significant clipping of power due to undersized inverters, system outages, systems with less than 

5 distinct power outputs for the whole year, or plants divided into sub-arrays with different panel 

tilt and azimuth angles. Therefore, a final set of 192 PV systems are analyzed (Fig. 1 & Table 1). 
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To avoid errors due to sensor cosine response and shading by nearby obstructions (not 

considered by SAW), only data for solar zenith angles less than 75° are considered. 

 

Table 1: Statistics of PV systems in SDG&E, SCE, and PGE territories 

IOU No. of PV 

systems 

Total PTC rated 

capacity(MW) 

Mean PTC 

rated (kW) 

Median PTC 

rated (kW) 

SDG&E 45 4.73 105.1 46.4 

SCE 81 17.48 215.8 192.9 

PGE 66 16.29 229.4 165.8 

 

2.2. Performance Model 

To convert SAW irradiation data for each site to CSI measured power output, a performance 

model has been developed. Using the GHI, DNI and tilt and azimuth angles of the PV panel, 

plane-of-array Global Irradiance (GI) is calculated using the Page model [11]. To predict cell 

temperature (Tcell) ambient air temperature and wind speed are obtained from measurements at 

the closest CIMIS station. Then, Tcell is calculated using a 1D transient heat transfer model [12], 

[13]. The temperature efficiency correction is then calculated as  

)C25(1       


 cellTemp T  Eq. (1), 

where α is the temperature coefficient and calculated such that the highest linear correlation 

between modeled and measured AC power output are obtained (see Appendix A). The DC power 

output of the PV system is estimated as 

2,
 Wm1000

.   



GI

kWP TempDCDCSAW   Eq. (2). 

Inverter efficiency is modeled as [14]  

2)0975.0(009.1007.0 pfpf

pf
AC



  Eq. (3), 

where the power factor is ACDCSAW kWPpf /, .  

Next maximum power point (MPP) efficiency is considered as [15] 

)ln(            321 GIaGIaaMPP   Eq. (4). 

The MPP efficiency is applied to correct typically observed deviations in modeled output from 

measurements across different irradiation values using empirically obtained coefficients ,2  ,1 aa

and 3a [16].  In this study, these coefficients are calculated such that the highest nonlinear 
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correlation between modeled and measured AC power output are obtained (see Appendix A). 

Then, the AC power output of the PV system is estimated as 

f
CPP DCSAWMPPACACSAW ,, ..     

Eq. (5). 

where Cf = avg(PCSI)/avg(PSAW,AC) accounts for the line losses and soiling by calibrating the 

modeled performance by the ratio of the annual average CSI measured to modeled power output. 

The calibration guarantees that modeled averaged annual performance based on SAW irradiation 

is consistent (or without bias) with observed performance. Such a ‘modeled output statistics’ 

(MOS) correction would typically also be applied in operational forecasting of PV power output. 

According to Eqs. (1-5), the total solar irradiance to power conversion efficiency (ηTot) is 

equal to 

f
C

Tot MPPACTemp ...      
Eq. (6). 

 

2.3. Temporal Matching between CSI and SAW data 

SolarAnywhere provides 30-min average centered irradiation at :00 and :30. CSI provides 15-

min averaged power output with an interval-ending timestamp at :00, :15, :30, and :45. 

Consequently, two CSI intervals are aggregated to compare against the corresponding SAW 

interval.  

 

2.4. Error Metrics 

Mean Bias Error (MBE) describes persistent differences between PSAW,AC and PCSI. Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE) describe random differences 

between PSAW,AC and PCSI. MBE, MAE, and RMSE are calculated as 
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where N is the number of samples. Also, the relative MBE (rMBE), relative MAE (rMAE), and 

normalized RMSE (nRMSE) are calculated as  

{
  
 

  
      

   

    (    )
     

     
   

    (    )
     

      
    

    (    )
     

 Eq. (8). 

To illustrate diurnal or seasonal patterns in the data, bias errors are averaged for each time of 

day (ToD) and each month separately to yield MBEMT [17] as the difference between 

       
 (     ) and     (     ) for m = 1,…, 12 (months) and ToD = 1, …, 48 (30 min 

segments).  

      (     )  
     (     )

    [    (     )]
    % Eq. (9). 

 

3. Results 

3.1. Comparison of California-wide modeled power output averages across the year 

PSAW,AC and PCSI  averaged for the SDG&E, SCE, and PGE territories along with the overall 

average for all three IOUs together are computed for the year 2010 (Fig. 2). Since the results do 

not differ significantly by IOU, for the remainder of the report, only averages across all three 

IOUs are shown. The average SAW and CSI power outputs are in good agreement for all three 

IOUs: They are essentially unbiased on average due to the calibration (Cf in Eq. 5) with small 

random errors. Typical differences (as measured by the rMAE and nRMSE) between the 

calibrated modeled and measured performance are 4 to 9% for 30-min averaged data. 

The average calibration factor of 0.91, Cf in Eq. 5, confirms that the performance model 

generally overestimates before calibration, likely since line losses and soiling of the PV systems 

that are not considered. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2: Modeled SolarAnywhere versus measured power output: 30 min power output (for 

SZA<75
o
) in 2010 averaged over (a) SDG&E (45 PV sites), (b) SCE (81 PV sites), (c) PGE (66 

PV sites), and (d) combined. The caption indicates the calibration factor (Eq. 5), the correlation 

coefficient (ρ), rMBE, rMAE, nRMSE between PSAW,AC and PCSI  . 

 

The average temperature coefficient (used in Eq. 1) was found to be α = 5.5x10
-3

 K
-1

. Figure 3 

shows histogram of the temperature coefficient for all PV systems. Temperature coefficients are 

expected to be between 3x10
-3

 K
-1

 for thin film and 5x10
-3

 K
-1

 for silicon solar cells. Since 

mounting details of individual PV systems was unknown the spread in temperature coefficients 

is also due to inaccuracies in the temperature model. Especially the spacing of the panel from the 

roof and roof properties can significantly affect convection heat losses and heat gain due to 

radiative interactions. 
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Fig. 3: Histogram of temperature coefficient (α) for all 192 PV sites. 

 

The daily and monthly average PV solar conversion efficiency (ηTot) , average over all the PV 

sites, is shown in Fig. 4. The annual average ηTot is 78.5%. The histogram of annual average of 

ηTot for all PV systems is presented in Fig. 5. Note that ηTot is not the solar conversion efficiency 

that would be reported on a specification sheet of a solar module or even the plant solar 

conversion efficiency. Rather, since the panel area is unknown, only relative real-world 

efficiencies considering losses due to (likely in this order) temperature, line, soiling, and 

inverters can be considered.  The trends in Fig. 4 are dominated by lower temperatures and 

consequently higher efficiencies during the winter. 

 

Fig. 4: Daily average relative solar conversion efficiency (SCE, ηTot) averaged over 192 PV 

sites. The blue line represents monthly averages and the caption shows the annual average of ηTot, 

averaged over 192 PV sites. 
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Fig. 5: Histogram of relative PV solar conversion efficiency (ηTot) for all 192 PV sites. 

 

Dependencies of the error in modeled performance on cell temperature, ambient temperature, 

wind speed, zenith angle, and inverter efficiency were examined. However, no trend in the error 

was found (not shown) indicating that a more complex model for these variables would not 

necessarily improve the agreement. The remaining random errors (RMSE) could be related to the 

temperature model and stem from the irradiation input data due to location errors in the SAW 

cloud fields (satellite navigation errors and cloud-to-shadow parallax). 

 

3.2. Climatologies of MBE by month and time-of-day 

Averaged rMBEMT of all PV systems is shown in Fig. 7. Generally, the biases are less than 3% 

during midday. PSAW,AC underestimates PCSI especially in March through May mornings, while 

PSAW,AC overestimates for small SZAs.  

 

Fig. 7, rMBE by month and time-of-day for PSAW,AC versus PCSI  (averaged over 192 PV sites) 

in 2010. The caption indicates mean, 0.25 and 0.75 quantiles of rMBE. 
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3.3. Comparison to PVWATTS 

PVWATTS is a standard calculator of PV performance maintained by NREL. For three 

representative sites, the PVWATTS PV performance was computed by Stephan Barsun (Itron) 

and compared to our performance model (Table 2). 

 

Generally PVWATTS and our model provide similar results. Our model performs slightly 

better, but the bias was calibrated to be zero in our model which probably also explains some of 

the improvement in MAE and RMSE. While the performance is not significantly better, one of 

the big advantages of our MATLAB model is the ‘true up’ to a significant amount of real 

metered data as opposed to the defaults in PVWATTS and ability to use different time steps. 

 

Table 2: Relative Mean Bias Error (rMBE) and relative mean absolute error (rMAE) for three 

different CSI PV sites in California. The following datasets are compared: PVWATTS (PVW), 

the performance model described in this chapter (us), and the measured CSI data. 

Error 

Metric 
Site 1 

PVW-us 

PVW - 

CSI 

Us - CSI Site 2 

PVW-us 

PVW - 

CSI 

Us - CSI Site 3 
PVW-us 

PVW - 

CSI 

Us - 

CSI 

rMBE [%] -1.6 -2.15 -0.6 -2.4 -2.9 -0.6 -4.4 -4.8 -0.5 

rMAE [%] 3.7 9.8 9.2 1.3 7.9 7.1 4.5 9.5 8.2 

 

As an aside, PowerClerk now tracks PV module mounting by standoff which will facilitate 

more accurate PV temperature modeling due to variation of convection losses on the back side of 

the module. In particular, standoffs are classified into, flush, 0 to 1, 1 to 3, and 3 to 6 inches. 

 

4. Conclusions 

A PV performance model was developed to calculate the expected power output for each PV 

system from SolarAnywhere (SAW) irradiation data (hereinafter referred to as SAW+P). 

Modeled power output was validated against measured power output from 192 PV systems in 

California (in SDG&E, SCE, and PGE territories) in 2010. An average PV efficiency derate 

(ηTot) of 79% (loss of 21%) describes losses due to panel temperature, AC conversion, MPP 

tracking, and annual calibration. The average calibration factor of 0.91 confirms that the SAW+P 

model generally overestimates, likely due to line losses and soiling of the PV systems that are 

not considered in Eq. 5. The bias error between modeled and measured power output was found 

to be less than 3% during middays while SAW+P underestimates the measured data in winter 

and spring times.  SAW+P provides a validated means to simulate real world system 
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performance and integrate PV simulations into grid simulations or other tools.  SAW+P does not, 

however, account for losses due to complete system outages due to maintenance, etc. 

A MATLAB version of the algorithm is provided at the CSI California Solar Research 

website. 
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Appendix A: Procedure to Calculate Temperature and MPP Efficiencies 

For each PV system, the temperature (linear regression) and MPP (nonlinear regression) 

efficiencies are calculated such that the highest correlation between modeled and measured AC 

power output are obtained (in 2 steps). 
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First, PSAW,DC,i and, then, ηAC,i are calculated using Eqs. 2-3 by assuming the temperature 

coefficient (α in Eq. 1) α = 5x10
-3

 K
-1

 (this is a widely used value for α for silicon PV which is 

applied as an initial guess). The initial performance AC output is 

   )ln(
,3,2,1

..)C25(1 005.01.
 Wm1000

.
   ,2,, GI

i
aGI

i
a

i
a

cell
TK

GI
DC

kW
P iACiACSAW 


  Eq. (A1), 

where PSAW,AC,i is an initial guess for AC performance output. The initial guess for MPP 

efficiencies ,,2  ,,1 ii aa and ia ,3 are obtained using nonlinear fit between PSAW,AC,i and PCSI. 

Then, by applying the obtained values for the initial MPP efficiencies ,,2  ,,1 ii aa and ia ,3 , the 

performance AC output at the second step is 

  iMPPiACDCiACSAW cell
T

GI
P kW ,,22,, ..)C25(1.

 Wm1000
   .  


 Eq. (A2), 

where )ln(,3,2,1, GIaGIaa iiiiMPP  . α is obtained using linear correlation between PSAW,AC,i2 and 

PCSI.  

Afterwards, by applying the obtained temperature coefficient (α), the temperature efficiency, 

DC power output, inverter efficiency, MPP efficiency, and AC power output are calculated using 

Eqs. 1-5. Note that the calibration factor (Cf in Eq. 5) is essentially the product of the constant 

coefficients in the two correlation steps above.  

To observe how well the efficiency coefficients fitted, temperature, inverter, and MPP 

efficiencies are calculated based on the PCSI as PCSI.1000Wm
-2

/(kWDC.ηAC.ηMPP.Cf), PCSI.1000Wm
-

2
/(kWDC.ηTemp.ηMPP.Cf), and PCSI.1000Wm

-2
/(kWDC.ηTemp.ηAC.Cf) respectively (These are called 

measured efficiencies hereafter). Measured ηTemp against Tcell, measured ηAC against power factor 

(pf), and measured ηMPP against GI are shown in Figs. A1-A3 respectively. These plots are 

shown for a representative PV site (site # SD-CSI-00618) and averaged over all the PV sites as 

well. Fig. A1 shows fitted line where the slope of this line is the temperature coefficient which is 

obtained in this study. 
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Fig. A1: Measured temperature efficiency (ηTemp) versus Tcell for SD-CSI-00618 PV system (red) 

and averaged over all the PV sites (black). 

 

 

Fig. A2: Measured inverter efficiency (ηAC) versus power factor (Pf) for SD-CSI-00618 PV 

system (red) and averaged over all the PV sites (black). 

 

 

Fig. A3: Measured MPP efficiency (ηMPP) versus GI for SD-CSI-00618 PV system (red) and 

averaged over all the PV sites (black). 
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To illustrate the effects of different submodels of the PV performance model, the power 

performance submodels are added in step-by-step: 
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 Eq. (A3). 

PSAW,r, PSAW,DC, and PSAW,AC1 against PCSI averaged over all the PV sites are shown in Figs. A4-

A6 respectively (averaged PSAW,AC against PCSI for all the PV sites is shown in Fig. 2d). Note that 

PSAW,r and PSAW,DC are normalized by DC rated capacity while PCSI, PSAW,AC1, and PSAW,AC are 

normalized by CSI (based on CEC PTC) rated capacity of all the PV systems.  

Fig. A4 confirms the fact that the performance model overestimates power output if no 

efficiency and loss coefficients are applied. The DC performance output needs to be modified 

according to temperature efficiency (Fig. A5). Fig. 6 shows the AC output by applying the 

inverter efficiency. However, the performance model overestimates at lower irradiances while it 

underestimates at higher irradiances, which is relaxed by applying MPP efficiency (Fig. 2d). 

Based on the correlation method applied in this study, a calibration factor of 0.89 is obtained 

which mostly accounts for the line losses and soiling (usually a 0.9 coefficient is considered for 

such losses). 

 
Fig. A4: Similar to Fig. 2d but for PSAW,r versus PCSI. 
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Fig. A5: Similar to Fig. 2d but for PSAW,DC versus PCSI. 

 

 
Fig. A6: Similar to Fig. 2d but for PSAW,AC1 versus PCSI. 

 

 


